Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674090

ABSTRACT

Cinnamic acid (CA) was successfully incorporated into Zn-Al layered double hydroxide (LDH) through coprecipitation. The CA moiety was stabilized in the interlayer space through not only electrostatic interaction but also intermolecular π-π interaction. It was noteworthy that the CA arrangement was fairly independent of the charge density of LDH, showing the important role of the layer-CA and CA-CA interactions in molecular stabilization. Computer simulations using the Monte Carlo method as well as analytical approaches including infrared, UV-vis spectroscopy, and differential scanning calorimetry showed the existence of intermolecular interaction. In order to reinforce molecular stabilization, a neutral derivative of CA, cinnamaldehyde (CAD), was additionally incorporated into LDH. It was clearly shown that CAD played a role as a π-π interaction mediator to enhance the stabilization of CA. The time-dependent release of CA from LDH was first governed by the layer charge density of LDH; however, the existence of CAD provided additional stabilization to the CA arrangement to slow down the release kinetics.


Subject(s)
Acrolein/analogs & derivatives , Cinnamates , Delayed-Action Preparations , Hydroxides , Cinnamates/chemistry , Hydroxides/chemistry , Delayed-Action Preparations/chemistry , Acrolein/chemistry , Kinetics , Monte Carlo Method , Calorimetry, Differential Scanning
2.
Sci Rep ; 14(1): 5188, 2024 03 02.
Article in English | MEDLINE | ID: mdl-38431723

ABSTRACT

Total knee arthroplasty (TKA) is associated with substantial blood loss and tranexamic acid (TXA) effectively reduces postoperative bleeding. Although it is known that there is no difference between intravenous or intra-articular (IA) injection, the general interest is directed towards topical hemostatic agents regarding thromboembolic events in high-risk patients. This study aimed to compare the blood conservation effects of IA MPH powder and TXA in patients undergoing primary TKA. We retrospectively analyzed 103 patients who underwent primary TKA between June 2020 and December 2021. MPH powder was applied to the IA space before capsule closure (MPH group, n = 51). TXA (3 g) was injected via the drain after wound closure (TXA group, n = 52). All patients underwent drain clamping for three postoperative hours. The primary outcome was the drain output, and the secondary outcomes were the postoperative hemoglobin (Hb) levels during the hospitalization period and the perioperative blood transfusion rates. An independent Student's t-test was used to determine differences between the two groups. The drain output in the first 24 h after surgery was significantly higher in the MPH group than in the TXA group. The postoperative Hb levels were significantly lower in the MPH group than in the TXA group. In patients with simultaneous bilateral TKA, there was a significant difference in the blood transfusion volumes and the rates between groups. It is considered that IA MPH powder cannot replace IA TXA because of an inferior efficacy in reducing blood loss and maintaining postoperative Hb levels in the early postoperative period after primary TKA. Moreover, in the case of simultaneous bilateral TKA, we do not recommend the use of IA MPH powder because it was notably less effective in the field of transfusion volume and rate.


Subject(s)
Antifibrinolytic Agents , Arthroplasty, Replacement, Knee , Tranexamic Acid , Humans , Arthroplasty, Replacement, Knee/adverse effects , Powders , Antifibrinolytic Agents/therapeutic use , Retrospective Studies , Postoperative Hemorrhage/prevention & control , Postoperative Hemorrhage/chemically induced , Injections, Intra-Articular , Administration, Intravenous , Blood Loss, Surgical/prevention & control
3.
R Soc Open Sci ; 10(10): 230506, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37830016

ABSTRACT

Deoxycholate (DA) is a natural emulsifying agent involved in the absorption of dietary lipids. Due to the facial distribution of hydrophobic-hydrophilic region, DA easily aggregates under ambient conditions, and this property hinders the practical application of DA in clinical applications. In this study, we found that the molecular arrangement of DA molecules could be controlled by using layered double hydroxide (LDH) under a specific reaction condition. The effect of reaction methods such as co-precipitation, ion exchange and reconstruction on the molecular arrangement of DA was investigated by X-ray diffraction, Fourier-transform infrared spectroscopy, high-resolution transmission electron microscopy and differential scanning calorimetry. It was demonstrated that the self-aggregation of DA molecules could be suppressed by the oriented arrangement of DA between the gallery space of LDH. The DA moiety was well stabilized in the LDH layers due to the electrostatic interaction between DA molecules and LDH layers. The most ordered arrangement of DA molecules was observed when DA was incorporated into LDH via a reconstruction method. The DA molecules arranged in LDH via reconstruction did not show significant exothermic or endothermic behaviour up to 400°C, showing that the DA moiety lost its intermolecular attraction in between LDH layers.

4.
Materials (Basel) ; 16(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37834660

ABSTRACT

A drug-delivery system consisting of an inorganic host-layered double hydroxide (LDH)-and an anticancer drug-methotrexate (MTX)-was prepared via the intercalation route (MTX-LDH), and its hematocompatibility was investigated. Hemolysis, a red blood cell counting assay, and optical microscopy revealed that the MTX-LDH had no harmful toxic effect on blood cells. Both scanning electron microscopy and atomic force microscopy exhibited that the MTX-LDH particles softly landed on the concave part inred blood cells without serious morphological changes of the cells. The time-dependent change in the surface charge and hydrodynamic radius of MTX-LDH in the plasma condition demonstrated that the proteins can be gently adsorbed on the MTX-LDH particles, possibly through protein corona, giving rise to good colloidal stability. The fluorescence quenching assay was carried out to monitor the interaction between MTX-LDH and plasma protein, and the result showed that the MTX-LDH had less dynamic interaction with protein compared with MTX alone, due to the capsule moiety of the LDH host. It was verified by a quartz crystal microbalance assay that the surface interaction between MTX-LDH and protein was reversible and reproducible, and the type of protein corona was a soft one, having flexibility toward the biological environment.

5.
Molecules ; 28(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37630324

ABSTRACT

Metal oxides (MOs) having Mg and Al with Mg/Al ratios of 1, 2, 3, and 4 were synthesized via calcination of the layered double hydroxides (LDH). The X-ray diffraction analysis revealed that all the MO consisted of periclase (MgO) crystallite with comparable crystallinity regardless of the metal ratio. According to the 27Al magic-angle spinning nuclear magnetic resonance, the phase transformation from LDH to MO upon calcination facilitated the evolution of the Al3+ ions with unsaturated coordination at the surface of MO. The specific surface area values of MOs were not significantly different from each other, ranging between 100 and 200 m2/g, suggesting that the metal ratio did not strongly influence the porous structure of MO. The temperature-dependent desorption of ammonia demonstrated that the Lewis acidity of the Al-rich MOs was the largest with an Mg/Al ratio of 1, attributed to the efficient exposure of the surface-active site Al3+-O2- pairs. The acidity of heterogenous Al-rich MOs significantly increased with the exposed tetrahedral Al site on the surface and dramatically diminished when the molar ratio (Mg/Al) was over two.

6.
Nanomaterials (Basel) ; 13(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37630948

ABSTRACT

The surface morphology of Mg-Al-layered double hydroxide (LDH) was successfully controlled by reconstruction during systematic phase transformation from calcined LDH, which is referred to as layered double oxide (LDO). The LDH reconstructed its original phase by the hydration of LDO with expanded basal spacing when reacted with water, including carbonate or methyl orange molecules. During the reaction, the degree of crystal growth along the ab-plane and stacking along the c-axis was significantly influenced by the molecular size and the reaction conditions. The lower concentration of carbonate gave smaller particles on the surface of larger LDO (2000 nm), while the higher concentration induced a sand-rose structure. The reconstruction of smaller-sized LDH (350 nm) did not depend on the concentration of carbonate due to effective adsorption, and it gave a sand-rose structure and exfoliated the LDH layers. The higher the concentration of methyl orange and the longer the reaction time applied, the rougher the surface was obtained with a certain threshold point of the methyl orange concentration. The surface roughness generally increased with the loading mount of methyl orange. However, the degree of the surface roughness even increased after the methyl orange loading reached equilibrium. The result suggested that the surface roughening was mediated by not only the incorporation of guest molecules into the LDH but also a crystal arrangement after a sufficient amount of methyl orange was accommodated.

7.
Int J Mol Sci ; 24(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37445736

ABSTRACT

Release of ferulic acid from surface-functionalized hollow nanoporous silica particles (HNSPs) was investigated in deionized water (DI water) and in ethanol. The host material, an HNSP, was synthesized in the presence of polymer and surfactant templates, and the pore as well as the surface were modified with either pentyltriethoxysilane (PTS) or octyltriethoxysilane (OTS) through silane coupling reactions. The inner hollow space occupied a volume of ~45% of the whole HNSP with a 2.54 nm pore channel in the wall. The pore size was estimated to decrease to 1.5 nm and 0.5 nm via the PTS and OTS functionalization, respectively. The encapsulation efficiencies of the HNSP (25 wt%), PTS-functionalized HNSP (PTS-HNSP, 22 wt%) and OTS-functionalized HNSP (OST-HNSP, 25 wt%) toward ferulic acid were similar, while the %release in DI water and ethanol varied following HNSP > PTS-HNSP > OTS-HNSP. Release kinetic analyses with Korsmeyer-Peppas fitting suggested a trade-off relationship between the solvent's ability to access the HNSP and the affinity of ferulic acid to the surface, allowing us to understand the solvent's controlled release rate and mechanism.


Subject(s)
Nanopores , Silicon Dioxide , Delayed-Action Preparations , Water , Ethanol , Solvents
8.
Bioengineering (Basel) ; 10(6)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37370665

ABSTRACT

Layered Double Hydroxides (LDHs) are inorganic compounds of relevance to various domains, where their surface reactivity and/or intercalation capacities can be advantageously exploited for the retention/release of ionic and molecular species. In this study, we have explored specifically the applicability in the field of bone regeneration of one LDH composition, denoted "MgFeCO3", of which components are already present in vivo, so as to convey a biocompatibility character. The propensity to be used as a bone substitute depends, however, on their ability to allow the fabrication of 3D constructs able to be implanted in bone sites. In this work, we display two appealing approaches for the processing of MgFeCO3 LDH particles to prepare (i) porous 3D scaffolds by freeze-casting, involving an alginate biopolymeric matrix, and (ii) pure MgFeCO3 LDH monoliths by Spark Plasma Sintering (SPS) at low temperature. We then explored the capacity of such LDH particles or monoliths to interact quantitatively with molecular moieties/drugs in view of their local release. The experimental data were complemented by computational chemistry calculations (Monte Carlo) to examine in more detail the mineral-organic interactions at play. Finally, preliminary in vitro tests on osteoblastic MG63 cells confirmed the high biocompatible character of this LDH composition. It was confirmed that (i) thermodynamically metastable LDH could be successfully consolidated into a monolith through SPS, (ii) the LDH particles could be incorporated into a polymer matrix through freeze casting, and (iii) the LDH in the consolidated monolith could incorporate and release drug molecules in a controlled manner. In other words, our results indicate that the MgFeCO3 LDH (pyroaurite structure) may be seen as a new promising compound for the setup of bone substitute biomaterials with tailorable drug delivery capacity, including for personalized medicine.

9.
ACS Appl Mater Interfaces ; 15(21): 25452-25461, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37204798

ABSTRACT

Engineering vanadium-based materials with high conductivity, superior redox performance, and high operating voltage has attracted widespread attention in energy storage devices. Herein, we demonstrated a simple and feasible phosphorization technique to design three-dimensional (3D) network-like vanadyl pyrophosphate ((VO)2P2O7) nanowires on flexible carbon cloth (CC) (VP-CC). The phosphorization process enabled the VP-CC to increase the electronic conductivity, and the interconnected nano-network of VP-CC opens pathways for fast charge storage during the energy storage processes. Specifically, the 3D VP-CC electrodes and LiClO4 electrolyte designed as a Li-ion supercapacitor (LSC) demonstrate a maximum operating window of 2.0 V with a superior energy density (Ed) of 96 µWh cm-2, power density (Pd) of 10,028 µW cm-2, and outstanding cycling retention (98%) even after 10,000 cycles. In addition, a flexible LSC assembled utilizing VP-CC electrodes with a PVA/Li-based solid-state gel electrolyte exhibits a high capacitance value of 137 mF cm-2 and excellent cycling durability (86%) with a high Ed of 27 µWh cm-2 and Pd of 7237 µW cm-2. Considering excellent energy storage features, the highly conductive vanadium-based material has been utilized as an ideal electrode for various flexible/wearable energy storage devices with superior performance.

10.
Clin Shoulder Elb ; 26(2): 208-211, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37088882

ABSTRACT

We describe the case of a 49-year-old right hand-dominant woman with myositis of the biceps brachii muscle unrelated to the inoculation site following Pfizer-BioNTech COVID-19 vaccination on the deltoid muscle of the left shoulder. Coronavirus disease 2019 (COVID-19) pandemic has involved global spread, and different vaccines including inactivated, protein, vectored, and nucleic acid vaccines have been developed and administered. Common side effects of COVID-19 vaccines include general manifestations such as headache, fever, and fatigue, and various musculoskeletal symptoms. Here, we present a case of myositis occurring in the biceps brachii muscle unrelated to the inoculation site, which has not been reported previously, accompanied by a literature review.

11.
Nanomaterials (Basel) ; 13(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36770528

ABSTRACT

The emulsifying ability of the naturally occurring surfactant deoxycholic acid (DCA) was improved by dynamic interaction with nanometric layered particles, layered double hydroxide (LDH). As DCA molecules are rigid due to the facial configuration of hydrophobic-hydrophilic groups, they tend to form molecular aggregation in an acidic condition or imbalanced water-lipid ratios. In this study, the homogeneous hybrids of DCA and LDH were obtained by the in situ growth of LDH at a DCA molecule. The DCA-LDH hybrid successfully prevented the molecular aggregation of DCA at an acidic pH and imbalanced water-to-oil ratio. The dynamic light scattering showed that the hydrodynamic radius of micelle in the emulsion made with DCA-LDH maintained its small size (<500 nm), while upon pH change and dilution with water, that made with DCA only uncontrollably increased up to ~3000 nm. The polydispersity index value of the DCA-LDH emulsion remained constant (<0.3) after the pH change and dilution with water, indicating the high stability of the formulation. Furthermore, time-dependent turbidity monitoring revealed that the DCA-only formulation suffered from serious coalescence and creaming compared with the DCA-LDH formulation. It is suggested that the dynamic interaction between LDH layers and DCA prevented molecular aggregation under unfavorable conditions for the oil-in-water emulsion.

12.
RSC Adv ; 13(8): 5529-5537, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36798609

ABSTRACT

Hyaluronic acid (HA) is a natural linear polysaccharide which has been widely used in cosmetics and pharmaceuticals including drug delivery systems because of its excellent biocompatibility. In this study, we investigated the one-pot synthesis of HA-coated gold nanoparticles (AuNP-HA) as a drug delivery carrier. The HAs with different molecular weights were produced by e-beam irradiation and employed as coating materials for AuNPs. Sulfasalazine (SSZ), a poorly water-soluble drug, was used to demonstrate the efficiency of drug delivery and the controlled release behaviour of the AuNP-HA. As the molecular weight of the HA decreased, the drug encapsulation efficiency of the SSZ increased up to 94%, while drug loading capacity of the SSZ was maintained at the level of about 70%. The prepared AuNP-HA-SSZ exhibited slow release of the SSZ over a short time and excellent sensitivity to different pHs and physiological conditions. The SSZ release rate was the lowest in simulated gastric conditions and the highest in simulated intestinal conditions. In this case, the AuNP-HA protects the SSZ from release under the acidic pH conditions in the stomach; on the other hand, the drug release was facilitated in the basic environment of the small intestine and colon. The SSZ was released under simulated intestinal conditions through anomalous drug transport and followed the Korsmeyer-Peppas model. Therefore, this study suggests that AuNP-HA is a promising orally-administered and intestine-targeted drug delivery system with controlled release characteristics.

13.
ACS Nano ; 17(3): 3019-3036, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36700565

ABSTRACT

While development of a sodium-ion battery (SIB) cathode has been approached by various routes, research on compatible anodes for advanced SIB systems has not been sufficiently addressed. The anode materials based on titanium oxide typically show low electrical performances in SIB systems primarily due to their low electrical/ionic conductivity. Thus, in this work, layered titanium oxides were hybridized with covalent organic nanosheets (CONs), which exhibited excellent electrical conductivity, to be used as anodes in SIBs. Moreover, to enlarge the accessible areas for sodium ions, the morphology of the hybrid was formulated in the form of a hollow sphere (HS), leading to the highly enhanced ionic conductivity. This synthesis method was based on the expectation of synergetic effects since titanium oxide provides direct electrostatic sodiation sites that shield organic components and CON supports high electrical and ionic conductivity with polarizable sodiation sites. Therefore, the hybrid shows enhanced and stable electrochemical performances as an anode for up to 2600 charge/discharge cycles compared to the HS without CONs. Furthermore, the best reversible capacities obtained from the hybrid were 426.2 and 108.5 mAh/g at current densities of 100 and 6000 mA/g, which are noteworthy results for the TiO2-based material.

14.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36232669

ABSTRACT

Interactions between layered double hydroxide (LDH) nanomaterials and plasma proteins according to their particle size and surface charge were evaluated. The LDHs with different particle size (150, 350 and 2000 nm) were prepared by adjusting hydrothermal treatment and urea hydrolysis and subsequent organic coating with citrate, malite and serite was applied to control the surface charge (ζ-potential: -15, 6 and 36 mV). Adsorption isotherms and Stern-Volmer plots for fluorescence quenching indicated that the human blood plasma had weak interactions toward all the types of LDHs. The adsorption isotherms did not show significant differences in the size and surface charges, while the fluorescence quenching ratio increased with the increase in the surface charge, implying that electrostatic interaction played a major role in their interactions. The fluorescence quenching of three types of plasma proteins (human serum albumin, γ-globulin and fibrinogen) by the surface charge-controlled LDHs suggested that the proteins adsorbed on the LDHs with a single layer and additional proteins were weakly adsorbed to surround the LDHs with adsorbed proteins. It was concluded that the LDH nanomaterials are fairly compatible for blood components due to the protein corona while the electrostatic interaction can affect their interaction with the proteins.


Subject(s)
Protein Corona , Citrates , Fibrinogen , Humans , Hydroxides , Serum Albumin, Human , Urea , gamma-Globulins
15.
Materials (Basel) ; 15(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36295371

ABSTRACT

Biphasic macroporous Hydroxyapatite/ß-Tricalcium Phosphate (HA/ß-TCP) scaffolds (BCPs) are widely used for bone repair. However, the high-temperature HA and ß-TCP phases exhibit limited bioactivity (low solubility of HA, restricted surface area, low ion release). Strategies were developed to coat such BCPs with biomimetic apatite to enhance bioactivity. However, this can be associated with poor adhesion, and metastable solutions may prove difficult to handle at the industrial scale. Alternative strategies are thus desirable to generate a highly bioactive surface on commercial BCPs. In this work, we developed an innovative "coating from" approach for BCP surface remodeling via hydrothermal treatment under supercritical CO2, used as a reversible pH modifier and with industrial scalability. Based on a set of complementary tools including FEG-SEM, solid state NMR and ion exchange tests, we demonstrate the remodeling of macroporous BCP surface with the occurrence of dissolution-reprecipitation phenomena involving biomimetic CaP phases. The newly precipitated compounds are identified as bone-like nanocrystalline apatite and octacalcium phosphate (OCP), both known for their high bioactivity character, favoring bone healing. We also explored the effects of key process parameters, and showed the possibility to dope the remodeled BCPs with antibacterial Cu2+ ions to convey additional functionality to the scaffolds, which was confirmed by in vitro tests. This new process could enhance the bioactivity of commercial BCP scaffolds via a simple and biocompatible approach.

16.
Adv Drug Deliv Rev ; 188: 114459, 2022 09.
Article in English | MEDLINE | ID: mdl-35850372

ABSTRACT

Layered double hydroxide is a family of two-dimensional materials with wide range of compositions. Recently, its ability to accommodate various chemical species and biocompatibility have been attracted in the biomedical applications to develop drug delivery system and nanodiagnostics. In this review, we categorized biomedical approaches of layered double hydroxide with respect to the three topologies of, namely, interlayer space, outer surface with particle edge, and the lattice points. There have been extensive researches on the intercalation of drug or tracing to make use of interlayer space of layered double hydroxide for drug stabilization, sustained release, cellular delivery and etc. Outer surface or edge has been utilized to immobilization of large therapeutic moieties and to attach tracing moiety. Lattice points consisting of various metal species could be utilized for the specific metal species like paramagnetic elements or radioisotopes. Based on these topologies in layered double hydroxide, both the synthetic routes and the achieved functionalities in terms of biomedical application will be discussed.


Subject(s)
Drug Delivery Systems , Hydroxides , Drug Delivery Systems/methods , Humans , Hydroxides/chemistry , Metals
17.
Adv Sci (Weinh) ; 9(10): e2104743, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35166059

ABSTRACT

The 2D transition metal carbides/nitrides (2D MXenes) are a versatile class of 2D materials for photovoltaic (PV) systems. The numerous advantages of MXenes, including their excellent metallic conductivity, high optical transmittance, solution processability, tunable work-function, and hydrophilicity, make them suitable for deployment in PV technology. This comprehensive review focuses on the synthesis methodologies and properties of MXenes and MXene-based materials for PV systems. Titanium carbide MXene (Ti3 C2 Tx ), a well-known member of the MXene family, has been studied in many PV applications. Herein, the effectiveness of Ti3 C2 Tx as an additive in different types of PV cells, and the synergetic impact of Ti3 C2 Tx as an interfacial material on the photovoltaic performance of PV cells, are systematically examined. Subsequently, the utilization of Ti3 C2 Tx as a transparent conductive electrode, and its influence on the stability of the PV cells, are discussed. This review also considers problems that emerged from previous studies, and provides guidelines for the further exploration of Ti3 C2 Tx and other members of the 2D MXene family in PV technology. This timely study is expected to provide comprehensive understanding of the current status of MXenes, and to set the direction for the future development in 2D material design and processing for PVs.

18.
Environ Res ; 205: 112532, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34896083

ABSTRACT

Two-dimensional (2D) transition metal carbides and nitrides (MXenes) have drawn considerable attention for application in the field of environmental remediation. In this study, we report the simultaneous reductive-adsorption behavior of Ti3CNTx for toxic metal ion Hg2+ ion in the aqueous phase. 2D Ti3CNTx and Ti3C2Tx MXene nanosheets were synthesized by exfoliation of Ti3AlCN and Ti3AlC2 MAX phases, respectively. Various characteristics analysis confirmed the successful fabrication of MAX phases and their exfoliation into MXenes. The fabricated MXene nanosheets were used to investigate their Hg2+ removal, Hg2+ intercalation, and surface interaction mechanism efficiencies. Both MXenes were found to adsorb and reduce a large amount of Hg2+. Analytical techniques such as X-ray powder diffraction, field emission transmission electron microscopy, zeta-potential analyses, and X-ray photoelectron spectroscopy were used to investigate the material characteristics and structural changes after uptake of Hg2+. The quantitative investigation confirmed the interaction of bimetal and hydroxyl groups with Hg2+ using electrostatic interactions and adsorption-coupled reduction. In addition, both MXenes exhibited extraordinary Hg ion removal capabilities in terms of fast kinetics with an excellent distribution coefficient (KdHg) up to 1.36 × 10+9. Based on batch adsorption results, Ti3C2Tx and Ti3CNTx exhibited removal capacities of 5473.13 and 4606.04 mg/g, respectively, for Hg2+, which are higher than those of previous Hg adsorbents.

19.
Polymers (Basel) ; 15(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36616360

ABSTRACT

The effect of repeated contact with food simulants on the properties and functionality of zinc oxide (ZnO) in nanocomposite films was investigated to examine possible safety hazards from the point of view of long-term use as food packaging. Low-density polyethylene (LDPE) embedded with 5 wt% nano-ZnO was immersed in distilled water, 50% ethanol, 4% acetic acid, and n-heptane. The cycle of immersion-rinse-dry was repeated up to 40 times for same sample under constant condition. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), field emission-scanning electron microscopy (FE-SEM), and UV-Vis spectroscopy analyses were performed to identify the changes in the chemical and functional properties of the nanocomposite film. Acetic acid had the greatest impact on the LDPE-ZnO nanocomposite films, while other food simulants caused little change. A new carboxylate bond was formed by the reaction of ZnO with acetic acid, as evidenced by the FTIR spectra. In addition, XRD and XAS confirmed the phase changes of nano-ZnO into zinc salts such as zinc hydroxy acetate or zinc acetate dihydrate. Furthermore, the light barrier property of the nanocomposite film drastically decreased, owing to the change in the bandgap of ZnO and film morphology.

20.
J Hazard Mater ; 416: 125879, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492819

ABSTRACT

In this study, we synthesized polystyrene coated persulfate polyacrylonitrile beads (PC-PSPANBs) to control persulfate (PS) release for targeted PAHs' degradation in a batch reactor. Initially, the persulfate release rate (ksr = 20.553 h-1) from PSPANBs was fast, but coating the PSPANBs with polystyrene controlled PS release rate (ksr= 2.841 h-1), nearly ten times slower than without coating. When Fe(II) activated PC-PSPANBs applied for 12 h degradation of acenaphthene (ACE), 2-methlynaphthalene (2-MN) and dibenzofuran (DBF), the optimum percent removal efficiencies (% R.Es) were as ACE (82.12%) > DBF (68.57%) > 2-MN (58.80%) and the optimum degradation rate constants (kobs) were found as ACE (11.348 h-1) > 2-MN (3.441 h-1) > DBF (1.101 h-1). The effect of SO42- and Cl- on ACE degradation showed that % R.E and kobs were enhanced with increasing anionic concentrations. The maximum % R.E was achieved for SO42- (76.24%) > Cl- (65.51%), but the highest kobs was in case of Cl- (1.536 h-1) > SO42- (0.510 h-1). The effectiveness of PS release longevity was also found because net degradations of ACE and DBF after first spiking were 12 mg L-1 and 16 mg L-1, while after second spiking were 18 mg L-1 and 10 mg L-1, respectively.


Subject(s)
Chlorides , Water Pollutants, Chemical , Oxidation-Reduction , Polystyrenes , Sulfates , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...